Comparison of Bond Lengths and Angles								
Compd	Ref	N-N, ^a A	N-C, A	С-С, А	∠N-M-N, deg	∠M-N-C, deg	∠N-C-C, deg	
$Ni(en)_3(NO_3)_2$	b	2.790(25)	1.500(25)	1.498(28)	82.3(10)	109.7(12)	111.1(23)	
$Cu(en)_2(NO_3)_2$	С	2.772	1.487(25)	1.545(27)	86.2	109.1	109.6	
			1.476(25)			108.5	110.6	
$Cu(en)_2(SCN)_2$	d	2.70(3)	1.46(3)	1.56(4)	84.8	110.5	109.4	
			1.49(3)			108.6	104.7	
$Pd(en)_2Cl_2$	е	2.713(10)	1.469(11)	1.518(13)	83.6(3)	108.2(5)	107.2(7)	
			1.484(11)			109.6(5)	107.1(7)	

TABLE V

^a Within a chelate ring. ^b L. N. Swink and M. Atoji, Acta Cryst., 13, 639 (1960). ^c Y. Komiyama and E. C. Lingafelter, *ibid.*, 17, 1145 (1964). ^d B. W. Brown and E. C. Lingafelter, *ibid.*, 17, 254 (1964). ^e This investigation.

TABLE VI

PERTINENT DATA INVOLVED IN THE HVDROGEN-BONDING SCHEME^a Distances of the Hydrogen Atoms from the Line Joining the Chloride Ion and the Nitrogen Atoms

	Distance of hydrogen
Atoms defining line	from the line, A
N(1)-Cl(III)	0.16
N(2)'-Cl(III)	0.36
N(I)-Cl(III)	0.35
N(II)-Cl(III)	0.03
Angles Involved in the Hydroge	en-Bonding Geometry
N(1)-Cl(III)-N(2)'	54.6°
N(1)-Cl(III)-N(I)	100.9°
N(2)'-Cl(III)-N(I)	87.6°
N(I)-Cl(III)-N(II)	153.4°
N(2)'-Cl(III)-N(II)	76.1°
N(1)-Cl(III)-N(II)	86.8°

 a The lettering refers to the atoms surrounding Cl(III) in Figure 2.

Clellan¹⁹ list $N \cdots Cl$ hydrogen-bonded distances ranging from 2.91 to 3.41 A. These distances in the present structure fall quite nicely within this range. Table VI gives the distances of the hydrogen atoms from the lines joining the chloride ion and the nitrogen atoms.

It can thus be seen that the positions of the hydrogen atoms indicate that there is hydrogen bonding taking place between the chloride ions and the nitrogen atoms. Some pertinent angles concerning the geometry of the nitrogen atoms surrounding the chloride ion are also given in Table VI.

Acknowledgments.—The authors wish to thank the National Science Foundation for partial support of this work under grant No. GP-1601 and also the University of Washington Computer Center for a grant of computer time.

(19) G. C. Pimentel and A. L. McClellan, "The Hydrogen Bond," W. H. Freeman and Co., San Francisco and London, 1960, p 290.

Contribution from the Department of Chemistry, University of South Carolina, Columbia, South Carolina 29208

Crystal Structures and Multiple Bonding in *trans*-Pt[P(C₂H₅)₃]₂Cl₂ and *trans*-Pt[P(C₂H₅)₃]₂Br₂

By G. G. MESSMER¹ AND E. L. AMMA²

Received May 2, 1966

The crystal structures of the isomorphous pair *trans*-Pt[P(C₂H₅)₈]₂Cl₂ and *trans*-Pt[P(C₂H₆)₈]₂Br₂ have been determined from counter data by two- and three-dimensional single-crystal X-ray techniques, respectively. The structures consist of discrete molecules with the platinum, phosphorus, and halogen atoms in essentially a square-planar arrangement. Only van der Waals interactions exist between molecules. The Pt–P bond lengths were found to be 2.300 ± 0.019 and 2.315 ± 0.004 A in the chloride and bromide, respectively. A Pt–P distance of 2.41 A would be expected from the sum of the single-bond covalent radii. The Pt–Cl and Pt–Br distances were found to be normal single bonds at 2.294 ± 0.09 and 2.428 ± 0.002 A, respectively. Within experimental error, the P–C distances were observed to be normal single bonds, and the Pt–P–C angles tetrahedral.

Introduction

The influence of π bonding on *cis-trans* isomerization and the *trans*-directing effect has been discussed for some time.³⁻⁷ In Pt(II) complexes the usually nonbonding $5d_{xz}$, $5d_{yz}$ filled metal orbitals can interact with π orbitals of appropriate symmetry. With trialkylphosphine ligands these are the empty phosphorus

(4) J. Chatt, L. A. Duncanson, and L. M. Venanzi, *ibid.*, 4456, 4461 (1955).

- (5) J. V. Quagliano and L. Schubert, Chem. Rev., 50, 201 (1952).
- (6) F. Basolo and R. G. Pearson, *Progr. Inorg. Chem.*, 4, 381 (1962).
 (7) F. Basolo and R. G. Pearson, "Mechanism of Inorganic Reactions,"

John Wiley and Sons, Inc., New York, N. Y., 1958, pp 172, 249.

In partial fulfillment for the Ph.D. requirements, University of Pittsburgh, 1966.
 Address all correspondence to this author.

⁽³⁾ J. Chatt and R. G. Wilkins, J. Chem. Soc., 273, 4300 (1952); 70 (1953); 525 (1956).

3d orbitals, whereas with chlorine or bromine ligands these are 3p-3d and 4p-4d hybrid orbitals, respectively. This type of π bonding is generally referred to as $d\pi - d\pi$ bonding.

Chatt and Wilkens³ have collected considerable thermodynamic data on *cis-trans* equilibria in benzene solutions of $Pt(MR_3)_2X_2$, where M = P, As, or Sb; R =methyl, ..., or *n*-pentyl; $X = Cl^-$ or I^- . Their results show that the *cis* isomer is more stable than the *trans*, and the cis isomer has a total bond energy approximately 10 kcal/mole greater than the *trans* isomer. This difference in bond energy was attributed to the difference in Pt–P $d\pi$ – $d\pi$ bonding in the two isomers. We undertook careful three-dimensional X-ray singlecrystal structure analyses in order to ascertain whether this difference in bond energy is reflected in the Pt-P bond lengths in the two isomers. There have been reports of Pt–P bond lengths as much as 0.15 A^{8,9} shorter than the sum of the appropriate covalent radii. With a few notable exceptions,⁹ much of the previous X-ray structure research has been from two-dimensional diffraction data^{8, 10, 11} limited in accuracy and frequently overinterpreted. We report here the results for the trans $Pt[P(C_2H_5)_3]_2Cl_2$ and $Pt[P(C_2H_5)_3]_2Br_2$ isomers; the results for the appropriate *cis* isomers will follow.

Experimental Section

Samples of trans-Pt[P(C_2H_5)₃]₂X₂, X = Cl, Br, were kindly supplied by Dr. J. Chatt and were recrystallized from methanol solution. Cell constants were obtained with the Picker diffractometer equipped with a GE single-crystal orienter. Owing to the fact that different X-ray tubes were aligned on the diffractometer at different times, the cell parameters of the chloride isomer were measured with Cu K α (1.5418 A), and the bromide, with Mo K α (0.7107 A). These cell constants were checked with calibrated Mo K α precession photographs, and they agreed within the stated error. The crystals were found to be isomorphous and monoclinic, $P2_1/n$ with $a = 11.00 \pm 0.02$ A, $b~=~11.52~\pm~0.02$ A, $c~=~7.49~\pm~0.01$ A, $\beta~=~93^\circ~0^\prime~\pm~15^\prime$ for the chloride and $a = 11.28 \pm 0.02$ A, $b = 11.58 \pm 0.02$ A, $c = 7.63 \pm 0.01 \text{ A}, \beta = 91^{\circ} 55' \pm 15' \text{ for the bromide}.$ With two formula units per cell, the X-ray density is 1.69 and 1.94 g cm^{-8} for the chloride and bromide, respectively (within 0.02 g cm⁻³ of the density measured by flotation in carbon tetrachloridebromoform mixtures).

Structure Determinations

trans-Pt[P(C₂H₅)₃]₂Cl₂.—Preliminary photographic data were obtained on the Weissenberg and precession cameras for the three principal zones with Mo K α radiation. These photographs showed strong thermal diffuse scattering, probably due to motions of the ethyl groups. This diffuse scattering increased the background and would complicate the location of the light atoms. Hence, this structure was determined using only two-dimensional data solely to indicate that the results were consistent with those of trans-Pt[P(C₂-H₅)₃]₂Br₂, but more limited in accuracy.

With a crystal 0.20 \times 0.23 \times 0.50 mm, 250 inde-

(11) S. S. Batsanov, Russ. J. Inorg. Chem., 4, 773 (1959). (A summary, see detailed references therein.)

pendent reflections for the three principal zones (h0l, 0kl, hk0) were measured by a scanning technique on the Picker diffractometer with a GE single-crystal orienter using Cu K α radiation. For details, see data collection for Br isomer. No corrections were made for absorption or extinction. The linear absorption coefficient for this crystal with Cu K α radiation is 177 cm⁻¹.

In space group $P2_1/n$ with two molecules per unit cell, the Pt atoms must be on centers of symmetry. The sets of centers of symmetry positions in $P2_1/n$ differ only in choice of origin; we chose the set 0, 0, 0and $\frac{1}{2}$, $\frac{1}{2}$, $\frac{1}{2}$. This confirms the *trans* configuration for this compound and further requires the Pt and its four nearest neighbors to be coplanar. The phosphorus and chlorine atoms were readily located by Patterson projections in the general positions of $P2_1/n$; $\pm (x,$ y, z; $\frac{1}{2} + x$, $\frac{1}{2} - y$, $\frac{1}{2} + z$). Carbon atoms were located from electron density and difference electron density projections.¹² The structure was refined by least squares,¹⁸ including anisotropic temperature factors for Pt, Cl, P, but only a single isotropic temperature factor for C. Scattering factors for neutral platinum, chlorine, phosphorus, and carbon were from the compilation of Ibers.¹⁴ A real dispersion correction was made to the platinum, chlorine, and phosphorus scattering factors from the values given by Cromer.¹⁵ The imaginary dispersion term was neglected. The effect of real and imaginary dispersion terms on atomic coordinates was carefully examined for the Br isomer (see below) and justifies this procedure. The function minimized was $\Sigma w (F_o - F_c)^2$ using equal weights. The final values of the disagreement index R, the weighted R, and the standard error of an observation¹⁶ are: 0.032, 0.034, 1.12 with NO = 84, NV = 31; 0.125, 0.115, 2.58 with NO = 82, NV = 19; 0.073,0.080, 2.14 with NO = 139, NV = 29, for h0l, 0kl, and hk_0 , respectively. The agreement is generally poorer in the 0kl zone owing to the fact that the Pt and Cl atoms are overlapping in this projection, and the appropriate variables had to be held constant. The final coordinate shifts of phosphorus and chlorine were less than $1/10\sigma$, whereas final carbon shifts were less than $1/3\sigma$. The location of the light carbon atoms in the presence of Pt is of some concern, 17, 18 and we have used several criteria to judge the validity of these positions for the structure: (1) peaks of the appropriate peak height appearing on the electron density and difference electron density projections; (2) convergence of the isotropic light-atom temperature factors in the refinement; (3) "reasonable" interatomic dis-

 $^{(8)\,}$ P. G. Owston, J. M. Partridge, and J. M. Rowe, Acta Cryst., $13,\,246$ (1960).

⁽⁹⁾ R. Eisenberg and J. A. Ibers, Inorg. Chem., 4, 773 (1965).

⁽¹⁰⁾ P. G. Owston and J. M. Rowe, Acta Cryst., 13, 253 (1960).

⁽¹²⁾ Patterson and Fourier calculations made with Sly, Shoemaker, Van den Hende, E.R.F.R.2 on the IBM 7090.

⁽¹³⁾ Least-squares calculations were performed with the Busing and Levy ORFLS program. Calculations performed on IBM 7090 or 7094.
(14) J. A. Ibers, "International Tables for X-Ray Crystallography,"

⁽¹⁴⁾ J. A. Ibers, "International Tables for X-Ray Crystallography," Vol III, The Kynoch Press, Birmingham, England, 1961, pp 202, 212.

⁽¹⁵⁾ D. T. Cromer, Acta Cryst., 18, 17 (1965).

⁽¹⁶⁾ $R = \Sigma ||F_0| - |F_c|| / \Sigma |F_0|$; standard error = $[\Sigma w (F_0 - F_c)^2 / (NO - NV)]^{1/2}$.

⁽¹⁷⁾ N. C. Baenziger, R. C. Medrud, and J. R. Doyle, Acta Cryst., 18, 237 (1965).

⁽¹⁸⁾ A. C. Hazell and M. R. Truter, Proc. Roy. Soc. (London), A254, 218 (1960).

Figure 1.—Perspective view of trans- $Pt[P(C_2H_5)_3]_2Br_2(Cl_2)$ down the *c* axis. Dotted lines indicate unit cell.

Figure 2.—Perspective view of trans-Pt[P(C₂H_b)₃]₂Br₂(Cl₂) down the *b* axis. Dotted lines indicate unit cell.

tances, both intramolecular and intermolecular; (4) comparison with the corresponding carbon atom coordinates in the bromine isomer. Within the relatively large errors (to be expected with the limited data), these criteria are satisfied for the carbon atoms of the chlorine isomer. Because of the use of only projection data and the neglect of absorption, no physical interpretation should be made of the anisotropic temperature factors.

The structure is essentially that of $trans-Pt[P(C_2-H_5)_3]_2Br_2$ shown in Figures 1 and 2. (See more de-

tailed description below.) Final observed and calculated structure factors are indicated in Table I. Table II contains the atom parameters and errors, and Table III, bond distances, angles, and errors.¹³ No physical significance should be attributed to the P–C and C–C bond length differences.

		Table	I	
CALCULATED	AND	Observed	Structure	FACTORS
1	FOR t	rans-Pt[P()	$C_2H_5_{3}_2Cl_2$	

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	0k.£		4 47	37	6.1	7 10	177	1 4	(KU) .49 515	
$ \begin{array}{c} 2 & 2 & 6 & 6 & 18 & 7 & 0 & 7 & 8 & 125 & 127 & 3 & 554 & 555 \\ 3 & 456 & 518 & 1 & 24 & 24 & -8 & 126 & 127 & 413 & -67 \\ 4 & 15 & 391 & -10 & 7 & 7 & 267 & 226 \\ 5 & 569 & 467 & -10 & 85 & 97 & 6 & 25 & 72 \\ 7 & 415 & 391 & -177 & 7 & 80 & 77 & 7 & 267 & 226 \\ 7 & 415 & 391 & -177 & 7 & 80 & 78 & 11 & 142 & 112 \\ 11 & 23 & 217 & -7 & 50 & 66 & -765 & 972 \\ 11 & 23 & 217 & -7 & 7 & 80 & 77 & 80 & 773 & 373 & -62 \\ 2 & 363 & 452 & -7 & 237 & 354 & 451 & 56 & 5 & 221 & -275 \\ 3 & 45 & -7 & 123 & 738 & 451 & 56 & 5 & 221 & -275 \\ 4 & 52 & 34 & -F(D) & F(C) & -76 & 50 & 65 & 73 & 3 & 73 & -62 \\ 2 & 363 & 452 & -7 & 237 & 354 & 45 & 51 & 56 & 5 & 221 & -275 \\ 4 & 54 & -56 & -7 & 237 & 354 & 451 & 56 & 5 & 221 & -275 \\ 4 & 54 & -76 & -7 & 238 & 230 & 8 & 342 & 3.55 \\ 7 & 165 & 139 & 9 & 340 & 350 & -110 & 227 & 214 \\ 13 & 37 & 374 & -77 & 711 & 171 & 171 & 9 & 64 & -1262 & -737 \\ 11 & 41 & -36 & 13 & 181 & 175 & 4441 & 456 & 1262 & -737 \\ 11 & 41 & -36 & 13 & 181 & 175 & 4441 & 456 & 1262 & -737 \\ 11 & 41 & -36 & 13 & 181 & 175 & 4441 & 456 & 1262 & -737 \\ 11 & 41 & -36 & 13 & 181 & 175 & 4441 & 456 & 1262 & -737 \\ 11 & 41 & -36 & 13 & 181 & 175 & 4441 & 456 & 1262 & -737 \\ 11 & 41 & -36 & 13 & 181 & 175 & 4441 & 456 & 1262 & -737 \\ 11 & 41 & -36 & 13 & 181 & 175 & 4441 & 456 & 1262 & -737 \\ 11 & 41 & -36 & 13 & 181 & 175 & 4441 & 456 & 1262 & -737 \\ 11 & 41 & -36 & 136 & 426 & 277 & 12 & 127 & 48 & 337 & -77 \\ 3 & 58 & 55 & 6 & 645 & 77 & 77 & 71 & 10 & 3 & -6 \\ 7 & 7 & 57 & -6 & 366 & 362 & 1468 & -175 & 10 & 3 & -6 \\ 7 & 7 & 57 & -6 & 366 & 362 & 171 & -178 & 128 & 128 & 738 \\ 2 & 358 & 355 & 6 & 415 & 418 & 3419 & 428 & 748 & 338 & -77 \\ 3 & 56 & 77 & 57 & -6 & 366 & 366 & 778 & 778 & 110 & 37 & -88 \\ 2 & 227 & 257 & 8 & 224 & 2277 & 51 & 130 & 32 & 236 & 374 \\ 1 & 36 & 267 & -71 & 128 & 147 & 170 & 172 & 173 & 110 \\ 3 & 227 & 216 & 136 & 777 & 737 & 316 & 317 & 316 & 317 & 316 \\ 3 & 224 & 235 & -71 & 239 & 237 & 138 & 316 & 317 & 336 & 374 \\ 1 & 306 & 377 & -737 & 396 & 374 & 377 & 377 & 377 & 378 & 37$	F(U)	F(C)	6 41	55	-6	72	62	ż	87 74	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 250	147	0K9		8 1	05	197	3.5	54 555	
4 173 -107 10 32 94 5 465 269 5 5C9 467 -10 85 97 6 25 722 6 61 507 727 74 15 391 10 74 11 247 220 220 396 11 142 133 11 14 143 11 142 133 11 142 133 11 142 133 11 142 133 11 142 143 144 145 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144 144	3 4 5 6	518	1 24	24	-8 1	00	109	41	13 -87	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 173	-107			10	92	94	54	C6 069	
	5 509	487			-10	85	97	6	26 22	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 El	50			H07				61 262	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 415	391			1 1	26	137		41 37	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8 109	87			3 1	03	112	10	46 - 34	
	10 42	265			5	99	96	11 1	42 132	
	11 233	217			7	80	78	13 1	22 133	
	13 150	130	h0,	,	-0	50	66	- 6	кр	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	14 25	34	• F(D)	F(C)	- 7	30	68	03	76 392	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	0 K 2		H01		0	65	73	24	73 464	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 32	- 4	3 351	359	2	71	30	5	13 -02 E1 404	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 3 5 3	452	-3 387	384	4	51	56	5 2	21 - 205	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 23	- 25	D 435	447	6	52	46	62	56 225	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 20	-39	7 233	230				8.3	42 305	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 347	342	+7 171	171				9	61 - 55	
8 244 226 -9 219 114 14 -15 9 16 31 11 347 356 F(C) F(C) 2117 117 11 14 -13 181 179 0K3 4631 4222 (205) 12 149 132 -13 161 1455 444 456 20 35 -14 471 46 430 426 2 35 -14 471 135 132 4 42 -05 14 477 467 2265 277 12 202 246 5 748 246 -77 232 242 246 -71 48 33 -77 233 35 -11 97 74 48 33 -77 10 35 -14 97 104 6 55 -73 77 371 48 33 -77 373 103 36 36 37 77 377 371 48 33 -37 371 35 33 <t< td=""><td>1 165</td><td>139</td><td>9 340</td><td>350</td><td></td><td></td><td></td><td>10 2</td><td>27 214</td><td></td></t<>	1 165	139	9 340	350				10 2	27 214	
9 16 31 11 347 358 F(C) F(C) 12 11 11 11 11 11 11 11 11 11 11 11 11	8 2 4 4	280	-9 219	224		hk	0	11	14 -5	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9 16	31	11 347	358	FL	C)	F(C)	12 1	Kn 117	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10 198	189	-11 183	179	, ,	KO.		1 2	62 .200	
	11 41	- 36'	-13 161	145		30	420	2	30 -31	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 149	85	H02	144	8 2	54	261	34	51 416	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 K 3		C 512	517	10 1	35	132	4	82 -95	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 457	467	2 265	272	12 2	03	246	5 2	98 246	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 134	96	-2 205	207	14	97	104	6	65 -68	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 514	485	4 130	139	1	KO.		, <i>'</i> 4	33 -272	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 48	~48	-4 558	569	2	11	44	. ¥ 3	42 324	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	4 77	377	e 415	418	4 1	88	9.92	10	3 -6	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 2 30	257	8 290	277	54	50	462	11 1	91 198	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8 52	62	-8 237	229	61	45	~143	1 Z	7 3	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	9 244	255	10 396	405	7 3	77	371		K0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	11 134	122	-10 235	229	91	53	164	1 0 1	37 143	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 12	57	12 247	24C	10	58	- 58	2 3	12 304	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13 107	100	-12 - 38	87	11 2	38	263		56 33	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1 76		1 200	407	12	11	1.75	43	48 305	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 386	377	-1 326	114	14	28	30	5	93 71	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	3 55	61	3 139	134	· ' 2	ĸэ		62	33 196	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 367	365	-3 424	402	1 2	35	231		6 17	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 40	25	5 420	416	22	22	243		30 308	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 142	153	-5 528	514	3	82	-61	10 2	14 27	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 28	19	7 337	342	4 3	50	369	ų	KO 1,	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 224	200	9 300	290		12	-101	12	94 305	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10 142	154	-9 294	297	, ,	31	13	2	25 -12	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	11 28	55	11 306	289	83	23	337	33	56 374	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12 91	83	-11 127	130	9	28	- 33	4 1	54 154	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	13 15	32	-12 97	102	10 2	68	273	52	79 244	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0K5		H04	2.24	11	45	- 50	<u>,</u> ,	10 11	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2 2 3 3	212	2 3 2 3	329	12 2	47	212	6,2	29 210	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 254	232	-2 183	183	14 1	25	134	10	37 39	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	4 56	71	4 292.	282	- 3	ĸo		10	к0	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 165	163	-4 353	339	12	15	239	03	36 346	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	6 34	21	6 376	371	2 1	53	184	1	72 -71	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	7 156	135	-6 258	268	94	57	3.64	23	87 458 97 977	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0 124	140	8 245	246	4 5 /	2	10		100 201 16 15	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10 15	70	10 220	214	6	64	437	6.2	34 234	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	11. 95	93	-10 183	188	8 1	18	92	7	57 -50	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	12 7	28	12 111	116	93	00	310	81	12 161	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	C×6		-12 80	81	10	63	-66	•	14 -8	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	1 24	- 28	HOS		11 2	70	210	11	ко	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2 141	130	1 219	211	14	19		2 2 2	67 JL) 07 J.)	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 47	22	-1 156	147	19 1	с7 Н	194	3 2	50 215	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	6 131	117	-3 170	151	. 4	ко	17	5 2	37 242	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8 81	114	5 285	258	C 4	42	471	6	72 -35	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	9 8	15	-3 163	151	1	87	100	71	67 113	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	10 71	72	7 230	232	2 4	61	499	8	67 -39 88	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	OK7		-7 140	144	31	50	143	×15	NG 1.4.5	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3 45	74	9 132	128	44	30	403	, í	60 – 70	
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	5 79	85	11 126	124	6 1	69	3114	2 1	72 173	
7 67 76 106 815 157 8315 157 9 43 391 0 173 167 9 43 391 0 173 167 9 22 -16 5 13 -31 0 0 88 2 214 230 10 243 230 13×0 11 20 -14 -2 111 37 10 243 230 13×0 13 2 40 26 4 157 170 17 157 167 3 106 114 3 2 40 26 4 157 170 17 157 167 3 106 114 3 2 -0 -4 113 114 13 18 18 4 42 53	6 15	2	-11 95	96	7 2	16	1.14	3	31 - 36	
9 43 341 0 173 167 9 22 -16 5 13 -31 0K8 2 215 230 10 243 230 13K0 1 20 -18 -2 111 37 11 29 -27 1 63 153 2 40 26 4 157 170 12 159 163 3 106 114 3 2 -0 -6 113 154 13 18 18 4 42 53	7 E7	76	нол		83	15	306	4 1	53 157	
OKU 2 211, 230 10 243 230 1380 1 20 -14 -2 111 7 11 29 -27 1 63 153 2 40 26 4 157 170 17 159 193 3 106 114 3 2 -0 -4 113 114 13 18 14 4 42 53	9 43	313	0 173	167	4	22	-16	5	13 - 31	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	048		2 214	230	10 2	43	2 30	13	AD 187	
3 2 -0 -4 113 134 13 18 18 4 42 53	2 40	-19	-2 111	17	11	29	-27	3 1	06 114	
	3 2	-0	-4 113	134	13	18	18		42 53	

^a $F(C) = 10F(calcd); F(calcd)_{absolute} = F(calcd)/scale factor.$

trans-Pt[P(C_2H_5)₃]₂Br₂.—A single crystal 0.2 × 0.2 × 0.5 mm was mounted about the needle axis ([001] direction) on the GE single-crystal orienter and used to collect intensity data with the Picker diffractometer using Zr-filtered Mo K α radiation. Backgrounds were estimated by stationary count for 40 sec at ±1.67°, 2 θ of the peak maxima. The peak was then scanned for 100 sec by a 2 θ scan. The net peak intensity was then computed by scaling the background to 50 sec

Atom	x/a	$\sigma'(x/a)$	s/b	$\sigma'(y/b)$	z /c	$\sigma'(z/c)$
Pt	0.5000	^a	0.5000	^a	0.5000	\dots^a
C1	0.6980	82	0.4549	120	0.4604	168
\mathbf{P}	0.4295	88	0.3314	157	0.3676	292
C_1	0.3024	482	0.3623	958	0.1814	1322
C_2	0.3581	660	0.4299	1306	0.0675	1731
C_3	0.3848	948	0.2393	907	0.6155	1647
C4	0.4460	1717	0.1930	1597	0.5425	621
C ₅	0.5391	415	0.2797	893	0.2040	919
C ₆	0.5076	679	0.1158	793	0.1829	1215

TABLE II DATA FOR *trans*-Pt[P(C_2H_5)₃]₂ Cl_2 Positional and Temperature Parameters and Errors: $\sigma' = \sigma$

Thermal Parameters and Standard Deviations; Anisotropic Temperature Factors of the Form

			$\exp[-(\beta_{11}$	$h^{2} + \beta_{22}$	$k^2 + \beta_{33}l^2 +$	$\cdot 2\beta_{12}hk$	$+ 2\beta_{13}hl + 2\beta_2$	[3kl)];	$\sigma' = \sigma \times 10^{\circ}$			
Atom	β_{11}	σ'	β_{22}	σ'	β_{33}	σ	β_{12}	σ΄	β_{13}	σ΄	$oldsymbol{eta}_{23}$	σ
Pt	0.0023	18	0.0049	42	0.0202	91	0.0001	15	-0.0018	15	0.0009	63
C1	0.0011	65	0.0049	102	0.0286	363	-0.0004	69	-0.0011	94	-0.0047	
р	0.0020	68	0.0022	112	0.0283	456	-0.0007	73	0.0031	79	-0.0012	219

	В,		• •	В,			В,	
Atom	A^2	σ	Atom	A ²	σ	Atom	\mathbf{A}^2	σ
C_1	4.8	1.6	C_3	8.9	5.5	Cŏ	3.8	1.4
C_2	6.7	3.3	C_4	8.0	3.4	C_6	4.2	3.2
			Scale	Factor	s			
	Zone				Scale fa	ictor		
	h0l			0.	$3829 \pm$	0.0039		
	0 k l			0.	$3380~\pm$	0.0083		
	hk0			0.	$3599 \pm$	0.0050		

^a Parameter fixed by symmetry.

Pt-C1

Pt--P

 TABLE III

 INTERATOMIC DISTANCES, ANGLES, AND ERRORS

 FOR trans-Pt[P(C₂H₅)₃]₂Cl₂

 Intramolecular, A

 2.294 ± 0.009 C₁-C₂
 1.33 ± 0.12
 2.298 ± 0.018 C₃-C₄
 1.74 ± 0.11
 C_{c-C_5} 1.69 ± 0.10

		$C_{5}-C_{6}$	1.69 ± 0.10
$P-C_1$	1.89 ± 0.05		
P−C ₃	1.63 ± 0.11	X–Pt	–X angles
$P-C_5$	1.77 ± 0.05	P-Pt-Cl	$87.3 \pm 0.14^{\circ}$
		PtPtC1	$92.7 \pm 0.14^{\circ}$

each and subtracting them from the peak scan. A total of 1953 independent hkl values was measured by this means. The linear absorption coefficient for this crystal with Mo K α radiation is 124 cm⁻¹. No corrections were made for absorption. The maximum difference in crystal dimension is only a factor of 2.5; and with linear absorption coefficients of the same magnitude, others have neglected absorption corrections.¹⁹⁻²² Further, it is generally accepted that neglect of absorption corrections does not affect atomic positional parameters but only thermal parameters.^{20, 22-25} The least-squares esd involves the assumption that all errors are random. Absorption is a systematic error and our bond length estimates of

error should be viewed as lower limits. However, an independent structure determination from equiinclination Weissenberg photographic data^{25b} gave Pt-X bond lengths not significantly different from those reported below (Table VI) but with esd's two to four times larger than the present results. The geometries of the counter and Weissenberg techniques are sufficiently different, so that, if absorption errors significantly affected atomic positions, they would produce significant Pt-X bond length changes. Further, our thermal parameters compare favorably with those in similar compounds in which absorption corrections have been calculated (see below). An estimate of the magnitude of the absorption correction might be obtained from the variation in the transmission factor for $PtH[P(C_6H_5)_2C_2H_5]Cl^9$ of 0.17-0.59 with $\mu = 57$ cm^{-1} .

The coordinates of platinum, phosphorus, and halogen were taken from the results of the chloride isomer. Bearing in mind the criteria for the location of light atoms cited above, the carbon atoms were located independently by Fourier and difference Fourier techniques.¹² The structure was refined with complete matrix least squares including anisotropic temperature factors for all atoms by minimizing the function

⁽¹⁹⁾ G. W. Smith and J. A. Ibers, Acta Cryst., 19, 269 (1965).

⁽²⁰⁾ M. B. Lang and K. N. Trueblood, ibid., 19, 373 (1965).

⁽²¹⁾ N. C. Stephenson, *ibid.*, **17**, 1517 (1964).

⁽²²⁾ J. Donohue, J. D. Dunitz, K. Trueblood, and M. S. Webster, J. Am. Chem. Soc., 85, 851 (1963).

⁽²³⁾ G. D. Christofferson, R. A. Sparks, and J. D. McCullough, Acta Cryst., 11, 782 (1958).

^{(25) (}a) Nevertheless, we feel that the effect of absorption on thermal parameters should be carefully examined, and we will make this the subject of a short communication elsewhere. (b) G. G. Messmer and E. L. Amma, unpublished results [Pt-P, 2.328 \pm 14 A; Pt-Br, 2.433 \pm 5 A]. Nore ADDED IN PROOF.—A careful analysis of absorption effects with $\mu = 191$ cm⁻¹ has recently been published [R. C. Svivastava and E. C. Lingafelter, Acta Cryst., **20**, 918 (1966)], and their conclusions justify our neglect of absorption errors for the determination of positional parameters.

TABLE IV

Observed and Calculated Structure Factors' for $\mathit{trans}\text{-}Pt[P(C_2H_5)_3]_2Br_2$

		Data	FOR trans- $Pt[P(C_2H$	$_{5}_{3}_{2}Br_{2}$		
	Atom Po	ositional and Tem	perature Parameters	and Errors; a σ'	$= \sigma \times 10^5$	
Atom	x/a	$\sigma'(x/a)$	y/b	$\sigma'(y/b)$	z /c	$\sigma'(z/c)$
Pt	0.5000	^b	0.5000	^b	0.5000	^b
Br	0.7037	15	0.4570	21	0.4304	40
Р	0.4303	35	0.3288	38	0.3787	76
C_1	0.3050	222	0.3332	210	0.2193	341
C_2	0.3265	315	0.4113	399	0.0816	741
C_3	0.3682	201	0.2309	178	0.5521	424
C_4	0.4674	335	0.2002	369	0.7160	761
C_5	0.5449	176	0.2423	194	0.2543	354
Ce	0.4962	233	0.1156	247	0.2101	617

TABLE V -- . . -

Thermal Parameters and Standard Deviations; Anisotropic Temperature Factors of the Form

			$\exp[-(\beta_{11}$	$h^{2} + \beta_{22}$	$k^{2} + \beta_{33}l^{2} -$	$\vdash 2\beta_{12}hk$ -	$+ 2\beta_{13}hl + 2\beta$	$[_{23}kl)]; \sigma$	$\sigma' = \sigma \times 10^{\circ}$			
Atom	β_{11}	σ΄	β_{22}	σ	eta_{33}	σ'	β_{12}	σ'	β_{13}	σ'	β_{28}	σ
Ρt	0.0046	5	0.0059	5	0.0307	24	0.0000	4	-0.0008	8	0.0006	10
Br	0.0054	11	0.0108	16	0.0540	73	0.0002	13	0.0024	22	-0.0047	32
Р	0.0067	30	0.0070	31	0.0435	145	0.0000	25	-0.0018	52	-0.0020	56
C_1	0.0169	267	0.0109	198	0.0385	645	-0.0009	188	-0.0110	318	0.0042	290
C_2	0.0198	413	0.0283	578	0.1046	1817	0.0075	398	-0.0267	735	-0.0389	924
C ₃	0.0124	212	0.0092	178	0.0770	1001	0.0007	156	0.0061	381	0.0134	357
C_4	0.0187	381	0.0210	449	0.1229	1957	-0.0056	342	0.0054	712	0.0294	826
Cå	0.0095	161	0.0115	195	0.0535	718	-0.0002	142	0.0050	280	-0.0155	312
C_6	0.0126	246	0.0123	269	0.1136	1668	0.0008	212	-0.0055	507	0.0124	554
Scale	factor $= 0$	1296 +	- 0.0006									

Scale factor 0.1296 ± 0.0006

^a With real and imaginary corrections. ^b Parameter fixed by symmetry.

 $\Sigma w (F_0 - F_c)^2$. The observations were weighted as the inverse of their variance $\sigma^2 F^2 = S(1/Lp)^2 [N +$ $2B + (0.04N)^2$], where N is the net count in a peak, B is the background count, S is the scale factor, and L pis the Lorentz-polarization correction.²⁶ Refinement was carried out in three different ways: (a) no dispersion correction,¹³ (b) real dispersion correction,¹³ and (c) real and imaginary dispersion corrections.²⁷ The scattering factors for Pt, Br, P, and neutral C were from the compilation of Ibers¹⁴ and the dispersion corrections from the tables of Cromer.¹⁵ Final atomic coordinate shifts were less than 4 \times 10^{-6} and 2 \times 10^{-4} of a cell edge for the heavier atoms and carbon, respectively. The atomic coordinates in all three refinements were found to be equal to within less than one standard deviation. In fact, even the rms displacements of the Pt, Br, and P atoms along the principal axes were found to be within two standard deviations for (a) and (c) and only slightly more different for (b). For refinement (c) the final R factor, weighted R, and standard error were found to be 0.077, 0.114,and 0.557, respectively. Final calculated and observed structure factors are listed in Table IV. Table V contains the final atomic parameters, temperature factors, and errors. Table VI contains the bond distances, angles, and errors.

Discussion of Structures

The crystal structures of the isomorphous pair, trans-Pt $[P(C_2H_5)_3]_2X_2$, X = Cl, Br, are composed of discrete molecules separated by normal van der Waals

TABLE VI BOND PARAMETERS FOR trans- $Pt[P(C_2H_5)_3]_2Br_2$ Intramolecular Distances

	menumoreculu	Distances	
Bon	ling, A	Nonbo	onding, A
Pt–P	2.315(4)	$Br-C_1$	4.94(2)
Pt-Br	2.428(2)	$Br-C_2$	4.96(3)
P-C ₁	1.84(2)	Br-C ₃	4.73(2)
$P-C_3$	1.90(2)	Br-C ₄	4.62(3)
$P-C_5$	1.92(2)	Br-C ₅	3.32(2)
$C_1 - C_2$	1.46(6)	Br-C ₆	4.88(3)
$C_3 - C_4$	1.64(5)		
$C_5 - C_6$	1.61(4)	$C_1 - C_3$	2.88(3)
		$C_1 - C_4$	4.43(6)
Bond an	gles, deg	$C_1 - C_5$	2.91(3)
P–Pt–Br	92.8(1)	$C_1 - C_6$	3.34(3)
P–Pt–Br′	87.2(1)	$C_2 - C_3$	4.19(6)
$Pt-P-C_1$	119.3(8)	$C_{2}-C_{4}$	5.61(8)
Pt-P-C ₃	111.1(1.0)	$C_{2}-C_{5}$	3.37(5)
$Pt-P-C_5$	114.8(6)	$C_2 - C_6$	4.01(5)
$P-C_1-C_2$	109.2(1.8)		
$P-C_3-C_4$	113.4(1.7)	$C_{3}-C_{5}$	3.11(3)
$P-C_5-C_6$	112.0(1.6)	$C_3 - C_6$	3.41(4)
$C_1 - P - C_3$	99.9(1.2)		
$C_1 - P - C_5$	102.6(1.1)	$C_4 - C_6$	4.10(8)
$C_3 - P - C_5$	107.6(1.1)		
	Intermolecular	Distances, A	
DtD	(7.65	29

	THECTHOICCHIAL	Distances, in
Pt–Pt		7.629
$Br-C_6$		3.94(3)
Br-C ₃		3.69(3)
All othe	ers	>4

distances (Figures 1 and 2 and Tables III and VI). The Pt-P-C and C-P-C angles are not significantly different from the expected tetrahedral value, and the P-C, C-C distances are normal single bonds. Carboncarbon nonbonded distances within a $\mathrm{P}(\mathrm{C}_2\mathrm{H}_5)_3$ group are similar to those found in free trimethylphosphine.²⁸

⁽²⁶⁾ S. W. Peterson and H. A. Levy, Acta Cryst., 10, 70 (1957).

⁽²⁷⁾ Modification of ORFLS for the C.D.C. 1604, including dispersion corrections. We wish to thank Professor L. Dahl for the use of this program and making the University of Wisconsin C.D.C. 1604 available for this calculation.

⁽²⁸⁾ H. D. Springall and L. O. Brockway, J. Am. Chem. Soc., 60, 996 (1938); D. R. Lide, Jr., and D. E. Mann, J. Chem. Phys., 29, 914 (1958).

The Pt–Pt separation is 7.61 A; there cannot be any significant metal-metal interaction.

Our average rms amplitudes were calculated to be 0.22 and 0.26 A for platinum and phosphorus, respectively, and are to be compared to the 0.19 and 0.21 A for these same atoms found by Eisenberg and Ibers.⁹ Our larger values arise from larger β_{33} values which are physically reasonable since this would correspond to a motion normal to the PtP₂Br₂ plane. Further, the terminal carbon atoms (C₂, C₄, C₆) have higher temperature factors than those bonded to phosphorus (C₁, C₃, C₅), as would be expected. The spread in observed carbon-carbon distances and the carbon temperature factors are similar to those found in other Pt(II) complexes where absorption corrections were made.¹⁷

Referring to Tables III and VI, it is seen that in both trans-Pt[P(C₂H₅)₃]₂Cl₂ and trans-Pt[P(C₂H₅)₃]₂Br₂ the metal-halogen bond distance is that of a "normal" Pt-X single bond. On the other hand, the Pt-P distances in both these compounds are approximately 0.1 A shorter than the sum of the covalent radii. The difference between these observed Pt-P distances and that calculated from the sum of the covalent radii is certainly real. It might be argued that our platinum radius of 1.31 A is not an appropriate value for a platinum single-bond radius, but the Pt-X bonds in this case give us an internal standard and seem to justify the use of this value. Our Pt-Cl distance is also in good agreement with the 2.32 A average distance observed by Baenziger, Medrud, and Doyle.¹⁷

Pt–P distances ranging from $2.26^{8,9}$ to $2.16 A^{9,10}$ have been reported. Except for the structure determination of PtH [P(C₆H₆)₂C₂H₆]₂Cl⁹ by Ibers and Eisenberg, Pt–P bond distances have not been reliable. In most of the Pt–P containing structures that have been reported, the bond length errors are as large as ± 0.07 A. Under these circumstances, 2.26 A is not statistically different from 2.41 A—the sum of the single-bond covalent radii. The large errors in the above two structures are to be expected from analysis of only two-dimensional photographic data. Further, experience has shown that estimates of error from twodimensional data are frequently too small, particularly if only the diagonal approximation is used for leastsquares refinement. We have reported the chloride results only to show that the same trend exists as in the bromide, and our estimates of error may also be somewhat optimistic for the chloride. The bond length variation between these isomers and the *cis* isomers will be discussed in a following paper.

The statistically significant distortion of the P-Pt-Br angle from the idealized 90° to the observed value of 92.8 \pm 0.1° is probably due to the Br-C₅ nonbonded interaction (see Table VI). It is to be noted from the C_n -C₅ distances that C₅ is rather rigidly constrained by its neighbors and cannot avoid the Br interaction.

It appears that in trans- $Pt[P(C_2H_5)_3]_2X_2$, the platinum nonbonding d orbitals interact with the empty phosphorus d orbitals to give a substantial amount of multiple bonding. By this interaction the phosphorus removes the partial positive charge that it would acquire by the donation of its pair of nonbonding electrons to the platinum in the formation of the complex. This has been frequently referred to as back-bonding. The fact that our Pt–P distance of 2.315 ± 0.004 A is significantly different from the 2.268 \pm 0.008 A distance found by Eisenberg and Ibers9 in hydridochlorobis(diphenylphosphine)platinum, where the phosphorus atoms have the same relative configuration, must mean that Pt-P distances are not completely independent of substituents in the *cis* positions. On the other hand, the halogens do not interact with the platinum to form multiple bonds, at least, no more so than in the diatomic halogens themselves.29

These results raise serious questions about the reliability of the Pt–Br bond distance of 2.7 A found by Bokii³⁰ in PtBr₃NH₃·H₂O. In the past, much has been made of Pt–R (R a general ligand) bond lengths and the *trans* effect from, almost without exception, two-dimensional analyses and incomplete refinements.^{11,31}

Acknowledgment.—This investigation was supported by Public Health Service Research Grant GM08344-03,04 from the National Institutes of Health.

(29) R. S. Mulliken, J. Am. Chem. Soc., 77, 884 (1955).

- (30) G. B. Bokii and G. A. Kukina, Soviet Phys. Cryst., 2, 395 (1957).
- (31) G. B. Bokii, Abstracts of Papers, 7th International Union of Crystallography, Rome, Italy, Sept 9-18, 1963, p Al.